THE FALLING BODY

Fa

Y Fg=mg

Here we will consider an object of mass m at some height above the ground. The object can be dropped
or thrown straight up and then let fall to the ground subject to the force of gravity F . There will be air
resistance F, that is proportional to the magnitude of the velocity and will always act opposite to the
velocity v.

Our direction convention will be positive v is up. We know from Newton's second law that FF’=m a or

dv
dr’

dropped or given an initial upward velocity.

F=m- This will always be the LHS of our equation. The RHS will depend on whether the ball is

So, our equation for the falling ball will be
dv

m-EZiFA—mg

with a minus sign in front of mg since positive motion is up. When the motion is up v > 0 we will have
— F, and when the motion is downward + F, with v < 0.

The downward force due to gravity mg will always be negative in this example since we defined
positive is up. What do we do with /', ? We have two conditions to consider.

If v is positive (object going up), then the air resistance will be negative, pushing against the object and
slowing it down.

dv
d

m - =—F,—mg
Next, when the object is falling downward then we will have + F', i.e. pushing up (positive direction)

on the object. But, as we said above the air resistance is proportional to the velocity. Since going
downward, v is negative so we will again have



m - =—F,—mg

dr

as our equation of motion. This is a special case and with other conditions you may need different
differential equations for the upward and downward segments.
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Example 1. Let m = 50 kg, air resistance = 5 v and g = 5— . The object is thrown straight up
s

from a platform 100m above the ground at

m
. Find v when it hits the ground.
S

restart
with(plots) :
with(DETools) :

First our initial condition.
icsl == v(O) =10;
ics] = v(0) =10 1)

Now define a function that is the RHS of our differential equation. The mass has been divided out.

dv _ FA
& m ¢
S= (,y)>—0.1'y —9.8;
f=(t,y)»—01y—98 (2)

Next, substitute v(#) into our dummy equation to get a differential equation for this situation. Then solve
it with our initial condition.

del = diff(v(t), t) =—0.1 v(t) —9.8;

d
del = — v(1) = =01 v(1) = 9.8 @)

soll = dsolve( {icsl, del});

t

soll = v(1)=—98 +108¢ “)



Now, to calculate v when it hits the ground, we need to know when it hits the ground. We can get the
when from how far it falls to hit the ground. We can integrate our sol/ to get an expression for position
ors(t).

s o= int( rhs(sol]), 1);
t
10

s =—98¢— 1080 ¢ (5)

Maple does not add a constant of integration, so we need to add it to the expression and then find out
what it is.
s=s5+c

t

s:=—98¢—1080¢e = +c (6)

Since our point of reference is the platform at 100m and time of zero.
c = eval( Solve(s =0, ), t= 0) ;
¢ == 1080 ™)

Check to make sure the expression is what we want. Then evaluate it for # when it falls 100m.
S5

t

—98¢—1080e " + 1080 8)

v_ground := evalf (solve(s=—100,¢)) ;
v_ground = 5.981471333, —3.32203508 )

We obtain two solutions but only the positive one makes sense. So now we can get the velocity when the
body hits the ground.

eval(soll, t=v_ground[1]);
v(5.981471333) = —38.61841902 (10)

This looks a little strange, but remember that positive is up and the body was falling down so v will be
negative.



20 m

Example 2. Suppose an object with mass 10 kg is launched upward with initial velocity from

s
a platform that is 3m high. Suppose there is a force due to air resistance of magnitude v directed

opposite to the velocity, where the velocity v is measured in m/s. Find the maximum height above the
ground that the object reaches. Our position reference point is the ground (not the platform) this time.

Our initial condition is
ics2 = VZ(O) =20;
ics2 = v2(0) =20 (11)
Again, we divide out the mass and note we can reuse equation 2 from above.
f2=(ty)>—0.1y—938;
f2=(t,y)» —=01y—98 (12)

de2 = a’iﬁ‘(vZ(t), 1) =—0.1 v2(t) —9.8;

d
de2 = — v2(1) = =0.1v2(1) = 9.8 (13)

sol4 := dsolve( {icsZ, deZ} );

t

sold = v2(1) =—98 + 118e (14)

When the object reaches its maximum height, its velocity v will be zero. Equation (15) is the ball's
velocity so let's plot it and see where it is zero. It is zero just under 2 and note at =0 we see the initial
conditions of 20.

plot( rhs(soM), size = [200, 200], view = [ —-1.2,—1.25 ], gridlines);




Now let's calculate the exact time the object's velocity is zero.

t_maxheight = evalf (solve(rhs(sol4) =0,1));
t maxheight == 1.857171458

Now we need position.

§2 = int(rhs(soM), 1);

t

s2:=—98¢—1180¢

s2 =52+ d

t

s2:=—98¢—1180¢

+d
Our point of reference for time at zero is the platform at 3m.
d = eval( Solve(s2= 3, d), t=0);

d = 1183

Check to make sure the expression is what we want.
52

t

—98¢—1180¢ " + 1183

The expression sol6 looks correct so plug in the time at maximum height ¢ maxheight so we can

calculate the max_height.
max_height := eval(s2, t=t_maxheight);
max_height :== 20.997197
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