THE X-Y PROJECTILE MOTION WITH AIR RESISTANCEI

Newton's second law of motion was used in The Falling Body example. An object with mass m was
subject to the force of gravity and a force in the opposite direction that was proportional to the velocity
of the body. It was an interesting and useful exercise, but only in one direction.

Now let's look at the two dimensional projectile problem with air resistance proportional to the mass m
and the velocity of the object.

restart,

The y component looks familiar. We could call this component just y, but we want to reserve that for the
direction.

y_dir == m- [d—Zy(t)] =—km- [% (t)] —mg;

ds
2

d d
y_dir::m[yy(t)]——km[Ey(t)j—mg 1)

The x component is similar without the effect of gravity and we assume so air resistance in the x
direction.

et) 0)
df

xaﬁr:m[d—22 x(t)]Z—km[% x(t)] @)

We can use dsolve to solve these equations. We haven't defined any initial conditions so Maple inserts
its own arbitrary constants.

dsolve(x_dir); dsolve(y_dir);

y(t)=— ———|—c2 A3)

For this exercise, let's have the projectile's lauch point as the origin. We will give it an initial velocity v

at an angle © . The projectile's velocity will have a transverse 7 and upward U components. This will be

written as

(T, U) = (v0-cos(®), v0-sin(©)).
Now we need to use these initial conditions when we solve the equations.

a’solve(({x_dir,x(O) =0, D(x) (0) :T}))5
dsolve(({y_dir,y(0)=0,D(»)(0)=U}));

—kt
—Uk—g)e + (—gt+U)k+g
iy =gl Tl) @
k
These are useful equations, but for future simplicity we really only need the right hand sides. So let's
redo the solutions.

X = rhs(dsolve({x_dir,x(O) =0, D(x) (0) =T}));

X::_T(%’”))
Y := rhs(dsolve({y_dir,y(o) =0,D(y)(0)=U}));

—kt
—Uk—g)e + (—gt+U)k+g
Y:_ () kz() (6)

Use 9.7 m"/s for g and theta in degrees. Here we will use the : operator. The values are easy to verify in
the Variables dropdown in the left panel.

g = 9.8:v0 = 600 : theta := 60 :

T:= vO-cos(convert(theta- degrees, radians));
T := 300 ()
)

U:= v0-sin(convert(theta-degrees, radians) ;

U:=300,/3 (8)

Now we can look at our solutions that are dependent on & and ¢.

300 (7' = 1)
- k
(=300 /3 k—9.8) ™'+ (—9.87+300 /3) k+9.8 o
kZ

So what do these solutions look like. We will let £ = k0 and set it equal to 0.01.

First plot the transverse or X component.
k0 := 0.01 :
plot({subs(k = k0, X) }, t=0..100, title =Position vs Time', color = black, size = [300, 300]);

Position vs Time

18000+
16000+
14000+
12000+
10000+
8000+
6000+
4000+
2000+

0 20 40 60 80 100

t

plot({subs(k=k0, Y) }, t=0..100, title =Position vs Time', color = blue, size = [300, 300]);

Position vs Time
10000

8000+

6000+

4000+

2000+

20 40 60 80 100

—2000+

These are interesting, but plotting the components separately we don't see the effect of air resistance.
Let's try plotting this parametrically Y versus X. Note the placement of brackets here. First we will place
the brackets around the two subs commands.

plot([subs(k=k0, X) , subs(k=kO0, Y)] , t=0..100, title =Position vs Time', color = blue, size = [300,
300]);

Position vs Time

15000+
10000+

5000+

O T T T T T T T T T 1
20 40 60 80 Y)o
t

plot([subs (k=kO0, X) , Subs (k=kO0, Y) ,1=0..100], title = Position vs Time', color = black, size
=1[300,300]);

Position vs Time
10000

8000+

6000+

4000-

2000+

2000 6000 10000 14000 18000

—2000+

Notice the air resistance effect. This plot is not a parabola now.

From the above Y plot that the altitude returns to zero between 80 and 100 seconds after launch. So let's
use fsolve to get an exact number for our time of flight.

T:=fsolve(subs(k=k0, Y) =0, t=80..100);
T:=92.10191668 (10)

Now plug this T into X to calculate the range when it hits the ground.

Subs({k=k0, tZT},X);
—9210.191668 ¢ 111 4 9210.191668 (11)

Oops, we don't need to get out a calculator. We can get Maple to do it for us with the evalf function.

evalf (subs({k=k0,t=T}, X));
5543.493798 12)

Let's find the rise time. Thinking about this problem, at the top of the path, the vertical velocity is zero.
So first define the vertical velocity.

v i=diff (Y, t);

V=

— (=300 /3 k—98) ke =98k
2
plot(subs(kaO, v), t=0..100, color = black, size = [300, 300]);

5004

13)

400
300-
200

100+

0 —

— 100+

—200-

— 300+

— 400

The rise time will be where this curve hits zero so let fsolve find that zero.

Trise == fsolve(subs(k=kO0, v)) ;
Trise := 42.54112774 (14)
The fall time is then total time T - Trise.

Tfall == T — Trise,
Tfall == 49.56078894 (15)
Note if we plug our rise time 77ise into our equation for ¥, we will obtain the max altitude achieved.

evalf(subs({k=k0, t= Trise}, Y))5
10271.21907 (16)

From the original reference, now plot multiples curves on one plot.

plot({Seq([subs(kzn-0.0l,X), Subs(an-0.0l, Y), t=0 ..IOO], n=1 .5) }, title = Projectile Motion
' labels = ['X',‘Y']);

Projectile Motion
10000 -
Y 5000-
O | v | v | v | v |
1000 2000 3000 4000 5000
X
—5000

