THE RLC PROBLEM
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VR =R - i(1);
VR == Ri(1)
d .
VL := L - El(l‘),
d
VL =L [E l(l)]
Joi(s)ds
Ve = C ;
Li(s) ds
Ve = c

Kirchhoff's voltage law says that the sum of the voltages around a closed loop is zero.

KVL :=VR+ VL + VC=VY,

KVL == Ri(t) +L[% i(t)) NEpRL E—— 4
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Now need to differentiate to clear the integral in the equation.

KVL = diff (KVL, t);

KVL := R (% i(t)j +L[d—2 (t)] —I—i(Tt)—O
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We have a second order differential equation and need two initial conditions. The first is

straightforward, let /(0) =0 since the inductor resists the flow of current.
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Now, the capacitor is a short at =0 so we have an RL circuit at t=0. We can use that observation to

determine a second initial condition.

IC_RL =i(0) =0;

K RL == VR + VL=VRL;

K RL=Ri(t) +L [% i(t)j =VRL

sol_RL = dsolve( {K_RL,IC_RL},i(1));
_r
' VRL [e b - 1)

sol RL = i(t)=— R
So the current is the RHS of this solution.
i_RL = rhs(sol_RL);

_m
VRL (e f- 1)
I RL :=— R

Now we can differentiate this current at =0 for the second initial condition.

iOprime := simplify(subs(t=0, diff (i_RL,1)));
VRL

Oprime = ———
iOprime 7
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Note that simplify is needed, otherwise you would be left with an ¢’ term in the solution. Nothing magic
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here since V=L - Ez(t) SO El(t) =f .



Now we are ready to solve the RLC circuit.

IC_RLC = i(0)=0,D(7)(0) =i0Oprime;
VRL

IC_RLC = i(0) =0,D(i)(0) =——
C_RLC =i(0) =0,D(i)(0) I 1
sol RLC = dsolve( {KVL, IC_RLC}, i(1));
_(RC— C(ch—4L))r _(RC+ C(ch—4L))r
JC(Rc—4L) VRL (e et —e et
sol RLC := i(1) = 3 (12)
RC—-4L

R
There are some interesting observations about what is going on with this solution. The T components

in the exponentials controls the damping. The \/ C (R2 CcC—4 L) term rewritten as

| R C° — 4 LC controls whether the system is under, critically, or over - damped. When this square
root has a negative sign under it, the roots are complex and the system will exhibit sinusoidal behavior.

So,if L=10""and C=10"" then for critical damping R =

4-10°
evalf =
10

63.24555320 13)

with( plots) :

i_1 = simplify(subs(VRL=1,C=10"", R=63.246, L=10"", rhs(sol_RLC)));
_ x 107 — x 107
i 1:= 4206436061 ¢ M _ 4006436061 ¢ THIH X0 (14)

pltl = plot(100+i_1,1=0.2-10"", gridlines, view=[0.8.-10",—0.1..0.1]) :



i 2:= simplify(subs( VRL=1,C= 10_9, R=50,L= 10_6, rhs(sol_RLC) ) );
1

o 5000000 (1/T5 —5) ¢ —5000000 (1,/T5 +5) ¢
i 2=~ (e —c ) /T3 (15)

plt2 = plot(100-i_2, t=0.2-10"°, gridlines, view= [0 .8.-107,—0.1..0.1 ]):

i3 = simplify(subs(VRL=1,C=10"",R=85,L=10"", rhs(sol_RLC)) );

[129 (62500000(—17 +/10) 1 _ 6—2500000(17 +m)t)

i 3= o (16)

plt3 = plot(100+i_3,t=0.2-10"", gridlines, view=[0.8.-10",—0.1..0.1] ) :

display( pltl, plt2, plt3);
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In the plot above, the middle line is the critically damped. The green one to the right is overdamped. The
blue one to the left is underdamped and starting to show sinusoidal behavior due to the complex roots.

Let's set R =0 and see what happens.



i_4 = simplify(subs(VRL=1,C=10"",R=0,L=10"", rhs(sol_RLC)));

J 10 sin( 10000000 /10 ¢)
100

i 4= 7

plot(100-i 4,1=0..0.2- 10", gridlines, size = [400,400]);
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From the graph the period looks like 2- 10~ or5 megahertz. Remember ®=2 - - f or31.4 - 10°

radians/sec. The actual value is found from equation (12) above with setting R = 0. After simplification
(=) -

1
you get terms with e "€ Which simplifies to eJL_C so the resonant frequency is equal to .
| LC

So for our example the frequency is 31.6 - 10° radians/sec.



