
THE RLC PROBLEM
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Kirchhoff's voltage law says that the sum of the voltages around a closed loop is zero.
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Now need to differentiate to clear the integral in the equation.



Now need to differentiate to clear the integral in the equation.
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We have a second order differential equation and need two initial conditions. The first is 
straightforward, let i 0  = 0 since the inductor resists the flow of current. 

Now, the capacitor is a short at t = 0 so we have an RL  circuit at t = 0. We can use that observation to 
determine a second initial condition.

IC_RL  i 0  = 0;
IC_RL i 0 = 0 (6)

K_RL  VR  VL = VRL;
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sol_RL  dsolve K_RL, IC_RL , i t ;
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So the current is the RHS of this solution.

i_RL  rhs sol_RL ;
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Now we can differentiate this current at t = 0 for the second initial condition.

i0prime  simplify subs t = 0, diff i_RL, t ;
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Note that simplify is needed, otherwise you would be left with an e0 term in the solution. Nothing magic 

here since V = L  
d
d t
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Now we are ready to solve the RLC circuit.



Now we are ready to solve the RLC circuit.

IC_RLC  i 0  = 0, D i 0  = i0prime;

IC_RLC i 0 = 0, D i 0 =
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sol_RLC  dsolve KVL, IC_RLC , i t ;

sol_RLC i t =
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There are some interesting observations about what is going on with this solution. The 
R
L

components 

in the exponentials controls the damping. The C R2 C 4 L  term rewritten as 

R2 C2 4 LC  controls whether the system is under, critically, or over - damped. When this square 
root has a negative sign under it, the roots are complex and the system will exhibit sinusoidal behavior. 

So, if L = 10 6 and C = 10 9 then for critical damping R = 

evalf
4 10 6

10 9  

63.24555320 (13)

with plots : 

i_1  simplify subs VRL = 1, C = 10 9, R = 63.246, L = 10 6, rhs sol_RLC ;

i_1 4.206436061 e 3.150413453 107 t 4.206436061 e 3.174186547 107 t (14)

 

plt1 plot 100 i_1, t = 0 ..2 10 6, gridlines, view= 0 ..8. 10 7, 0.1 ..0.1 : 

 



 
i_2  simplify subs VRL = 1, C = 10 9, R = 50, L = 10 6, rhs sol_RLC ;

i_2
I

150
 e5000000 I 15 5  t e 5000000 I 15 5  t  15 (15)

 

plt2 plot 100 i_2, t = 0 ..2 10 6, gridlines, view= 0 ..8. 10 7, 0.1 ..0.1 : 

i_3  simplify subs VRL = 1, C = 10 9, R = 85, L = 10 6, rhs sol_RLC ;

i_3
129  e2500000 17 129  t e 2500000 17 129  t

645
(16)

plt3 plot 100 i_3, t = 0 ..2 10 6, gridlines, view= 0 ..8. 10 7, 0.1 ..0.1  : 
 
display plt1, plt2, plt3 ;
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In the plot above, the middle line is the critically damped. The green one to the right is overdamped. The
blue one to the left is underdamped and starting to show sinusoidal behavior due to the complex roots.

Let's set R = 0 and see what happens.

i_4  simplify subs VRL = 1, C = 10 9, R = 0, L = 10 6, rhs sol_RLC ;



i_4  simplify subs VRL = 1, C = 10 9, R = 0, L = 10 6, rhs sol_RLC ;

i_4
10  sin 10000000 10  t

100
(17)

 

plot 100 i_4, t = 0 ..0.2 10 6, gridlines, size = 400, 400 ; 
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From the graph the period looks like 2 10 7 or 5 megahertz. Remember  = 2    f  or 31.4  106 
radians/sec. The actual value is found from equation (12) above with setting R = 0. After simplification 

you get terms with e
4 LC
LC  which simplifies to e

i

LC   so the resonant frequency is equal to 
1

LC
. 

So for our example the frequency is 31.6  106 radians/sec.

 


