THE MULTIPLE MIXING TANK PROBLEM

I found the following example at https://www.math.utah.edu/~gustafso/2250systems-de.pdf.

This link is Chapter 11 Systems of Differential Equations. I tried unsuccessfully to find the rest of the
book so I could credit it. It is a really interesting example and Maple makes it very to solve and

visualize.

To look at multiple mixing tanks let's continue the pond theme. Here, we have three ponds connected by
streams. Pond 1 has a pollutions source. The goal is the determine the amount of pollution in each pond.

We will assume the following.
* The pollutant flows into pond 1 at 0.125 Ib/min for 2880 minutes, then zero.
* The flow rates out of each pond are f|, f,, f; in gal/min. Each pond is well mixed.

* The three ponds have volumes ¥, V,, V; in gal which remain constant.

* The amount of pollution in each pond is p, (¢), p, (), p;(2) in lbs.
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The pollutant flux out of each pond will be the flow rate in gc'z times the pollutant concentration in

min
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V.

Volume |

P
. For pond 1 this would be f,(¢) - [—1] .
We can now write down the differential equations for this example.
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pf, = 100; pf, == 100; pf, := 100;
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V1 := 100000; V2 := 100000; V3 := 100000;
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For a numerical example we will let each pond's 7’ term equal 0.001. As you will see below, the pond

pollution trajectories are interesting in the first 2880 minutes and then converge to the same value in
each pond.

PondSystem = {Pondl,PondZ, Pond3,pl(0) =0, pz(O) =0, p3(0) ZO};

4, -2 al £ 0125, p (4 LGN N 5
7D~ To00 ~ Tooo 912> 5 () T To00” T Tooo > @ A1) O
_pz(t) p3(l‘) B B B
=000~ Tooo :2:(0) =0.1,(0) =0.p,(0) =0

PondSystem =

PondSolution = dsolve( PondSystem);
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Pl = eval(pl ( l‘) 5 POHdSOlutiOI’l);
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P2 = eval(p2 ( t) , PondSolution);
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P3 = eval(p3(t) , PondSolulion);
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evalf( eval(Pl, t= 2880) )E evalf( eval(P2, t= 2880) ); evalf( eval( P3,t= 2880) )E
162.3016570

119.6140523
78.08429066

Let's see what the pollution in each pond looks like in the first 2880 minutes.

with(DETools) :
soll = dsolve(eval( PondSystem) , numeric);

soll = proc(x_rkf45) ... end proc
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plots:-odeplot(sol], [ [t,pl(t) ], [t, pz(t) ], [t, p3(t) ] ], t=0..2880, legend = [”pond 1", "pond 2",
"pond 3"], gridlines, view = [0 ..2880,0..175 ], size = [300, 300]);
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Now, turn off the pollution going into pond 1 and resolve the equations for the Long Term (LT)

solution.

Pondl] = lhs(Pond]) =rhs(P0nd]) — 0.125;
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PondSystemLT = {Pond], Pond?2, Pond3,p1(0) =162.302, p2(0) =119.614, p3(0) =78.085} ;
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PondSolutionLT = dsolve( PondSystemLT );
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PILT = eval(p1 ( t) , Pona’SolutionLT);
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P2LT = evatl(p2 ( t) , PondSolutionLT);
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P3LT := eval(p3 ( t) , PondSolutionLT);
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Now you can see what the LT solutions are.

evalf ( eval( PILT, t=4000 )); evalf ( eval( P2LT, t=4000 )); evalf ( eval( P3LT, t=4000 ))s
119.9197210

119.9630419
120.1182371 19)

sol2 = dsolve(eval(PondSystemLT ), humeric);
sol2 == proc(x_rkf45) ... end proc (20)

plots:—odeplot(solZ, [ [t,pl(t) ], [t, pz(t) ], [t, p3(t) ] ], t=0..5000, legend = ["pond 1", "pond 2",
"pond 3”], gridlines, view = [0 ..5000, 0..175 ], size = [300, 300]);
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