
THE MASS SPRING PROBLEM

Consider an unstreched spring of length l.

Now, attach an object of mass m to the spring. It will be streteched downward a length L. This stretched 
length will be our starting point for analysis. Let this point be defined as y = 0 with a positive direction 
in the downward direction.

From Newton's second law we have F = m  a  or in our case F = m  y '' . What are the forces that can act 
on this object?

1. Gravity
The force of gravity will always act on this object and will be defined as

F
g

= m  g .

2. Spring
Hooke's law will govern the force on the spring.

F
s
 = k  L  y  

3. Damping
Damping will resist any movement and will be proportional to the velocity of the object.

F
d
 =   y '

4. External forces
In this term you can put in any other forces acting on the object as a function of time.

F t



Now we add all of these forces into our Newton's Second Law equation.

m  y '' = m g k L y   y ' F t
 

m  y ''   y '  k y  =  m g k L F t   

But, at equilibrium the system is at rest and m g = k L. This can be used to determine k. So we can 
rewrite our equation as

m  y ''   y '  k y  =  F t  .

and it will have the following initial conditions.

y 0  = y0         Initial displacement from the at rest, equilibrium position.
y ' 0  = y0 '   Initial velocity.

restart;
with DETools :
eq1  diff y t , t  = v t ;

eq1
d
dt
y t = v t (1)

eq2  diff v t , t  = 
k
m

  y t   
b
m

v t ; 

eq2
d
dt
v t =

k y t
m

b v t
m

(2)

sys eq1, eq2 ;

sys
d
dt
y t = v t ,

d
dt
v t =

k y t
m

b v t
m

(3)

sys1 subs b =
1
3

, m = 1, k = 1, sys ;

sys1
d
dt
y t = v t ,

d
dt
v t = y t

v t
3

(4)

 
 
ics 0, 1, 0 ;

ics 0, 1, 0 (5)

 
 



 
 
DEplot sys1, y t , v t , t = 5 ..25, ics, y = 2.5 ..1.5, title = "Mass-Spring (m=1,k=1,b=1/3",

stepsize = 0.1, scene = t, y , size = 300, 300 ;
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Now, let's put in different initial conditions to create a critically damped system.
 
 

sys2 subs b = 6, m =
1
2

, k = 18, sys ; ics2 0,
1
2

, 1 : 

sys2
d
dt
y t = v t ,

d
dt
v t = 36 y t 12 v t (6)



 
 DEplot sys2, y t , v t , t = 0 ..3, ics2, y = 0.75 ..0.2, title = "Mass-Spring (m=1/2,k=18,b=6",

stepsize = 0.1, scene = t, y , size = 300, 300 ;
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Mass-Spring (m=1/2,k=18,b=6

With Maple it is easy to see the solution but what does this equation look like. 

First, explicitly define the initial conditions.
 
inits y 0 = 0.5, v 0 = 1;

inits y 0 = 0.5, v 0 = 1 (7)

Then, define the equations.

eqs
d
dt
y t = v t ,

d
dt
v t = 36 y t 12 v t ;

eqs
d
dt
y t = v t ,

d
dt
v t = 36 y t 12 v t (8)

 



 
Now solve the system.

dsolve eqs, inits  , y t , v t   ;

v t = e 6 t 12 t 1 , y t = e 6 t 2 t
1
2

(9)

 
Here you can see what the position y t looks like.

Now let's plot it. First get a numeric solution to the system so you can plot y t  .
 
 
 sol_numeric dsolve eval eqs, inits , numeric ;

sol_numeric proc x_rkf45 ... end proc (10)

 plots:-odeplot sol_numeric, t, y t  , t = 0 ..3, view= 0 ..4, 0.7 ..0.2 , gridlines, size = 300, 300 ;
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Why is the above example referred to as critical damping. We need to look at our second order equation 
to find out.

m  y ''   y '  k y  =  0 

Let's solve it.

f y→m y2    y k ;

f y ↦m y2 y k (11)

solve f y = 0, y ;  

2
4 m k

2 m
,

2
4 m k

2 m
(12)

We see the expected result for the solution of a quadratic equation. What is interesting to us is what is 
happening under the square root sign. Three cases make sense.

1. 
2 

4 mk  is equal to zero.

For our examples above m is m, b is  , and k is k. So for the example immediately above 
m = 1 / 2,  k = 18,  b = 6

m (13)

 
2 

4 mk  is 62  4  
1
2

 18   or 36  36  or zero. So that is why the system was critically

damped.

Note that since 
2 

4 mk = 0 then 
2 

= 4 mk and  = 2 mk  which will be referred to as the critical 
damping coefficient.

2
= 4 mk (14)

2. 
2 

4 mk is greater than zero.

Here,   will be greater than 2 mk  or the critical damping we defined in 1.

3.
2 

4 mk is less than zero.



Here,   will be less than 2 mk  or the critical damping we defined in 1.

The problem set up for the above criticalled damped system started with a 16 lb object that stretches a 
spring 8/9 feet. 

Add a damper that will exert a force of 12 lbs when the velocity is 2 ft/sec. Remember our equation is

m  y ''   y '  k y  =  F t  with F t  = 0.

So we have 12 =   2 ⇒  = 6. (This was b in the example).

The mass is m = 
W
g

 = 
16
32

 = 
1
2

.

Remember m g = k  L so

k = 
m  g
L

 = 
16
8
9

 = 18.

The spring is displace 6 inches upwards and given an initial velocity of 1 ft/sec. Since downward is 
positive the initial conditions are

y 0  = 
1
2

 and y 0 ' = 1.

Now let's create an overdamped system. Let the damper exert a force of 17 lbs this time. Now we have 
17 =   2 ⇒  = 8.5. The  is greater than the critical damping factor which was 6. Now we have

m 
d2

dx2 y x  
d
dx

y x k y x = 0

1
2

 
d2

dx2 y x 8.5
d
dx

y x 18 y x = 0 

Now let's multiply through by 2 and get



d2

dx2 y x 17
d
dx

y x 36 y x = 0

d2

dx2 y x 17 
d
dx

y x 36 y x = 0 (15)

f2 y→y2  17  y 36 ;

f2 y ↦ y2 17 y 36 (16)

evalf solve f2 y = 0, y ;  

2.479202710, 14.52079729 (17)

So there are 2 real roots.

Again, explicitly define the initial conditions.
 
inits y 0 = 0.5, v 0 = 1;

inits y 0 = 0.5, v 0 = 1 (18)

Then, define the system equations.

eqs2
d
dt
y t = v t ,

d
dt
v t = 17 v t 36 y t  ;

eqs2
d
dt
y t = v t ,

d
dt
v t = 17 v t 36 y t (19)

 
Now solve the system.

evalf dsolve eqs2, inits  , y t , v t   ;

v t = 1.288932058 e 2.479202710 t 0.2889320583 e 14.52079729 t, y t =

0.5198978095 e 2.479202710 t 0.0198978095 e 14.52079729 t

(20)

 
Here you can see what the position y t looks like.



Now let's plot it. First get a numeric solution to the system so you can plot y t  .
 
 
 sol_numeric2 dsolve eval eqs2, inits , numeric ;

sol_numeric2 proc x_rkf45 ... end proc (21)

 plots:-odeplot sol_numeric2, t, y t  , t = 0 ..3, view= 0 ..4, 0.7 ..0.2 , gridlines, size = 300,
300 ;
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In this case the overdamped case takes a little longer to settle to 0. Note that the crtically damped system
settles as quickly as possible without overshooting the steady state condition, 0 here. What does an 
underdamped system look like?

To create an underdamped system  must be less than the critical value, 6 in these examples. Let the 
damper exert 5 lbs when the velocity is 2 ft/sec.

Now we have 5 =   2 ⇒  = 2.5.

The  is less than the critical damping factor which was 6. Now we have

m 
d2

dx2 y x  
d
dx

y x k y x = 0



1
2

 
d2

dx2 y x 2.5
d
dx

y x 18 y x = 0 

Now let's multiply through by 2 and get

d2

dx2 y x 5
d
dx

y x 36 y x = 0  

f2 y→y2  5  y 36 ;

f2 y ↦ y2 5 y 36 (22)

evalf solve f2 y = 0, y ;  

2.500000000 5.454356055 I, 2.500000000 5.454356055 I (23)

So there are 2 complex roots so we expect some sort of sinusoidal response.

Again, explicitly define the initial conditions.
 
inits y 0 = 0.5, v 0 = 1;

inits y 0 = 0.5, v 0 = 1 (24)

Then, define the system equations.

eqs3
d
dt
y t = v t ,

d
dt
v t = 5 v t 36 y t  ;

eqs3
d
dt
y t = v t ,

d
dt
v t = 5 v t 36 y t (25)

 
Now solve the system.

evalf dsolve eqs3, inits  , y t , v t   ;

v t = 0.5000000000 e 2.500000000 t 5.683530680 sin 5.454356055 t

2. cos 5.454356055 t , y t = e 2.500000000 t 0.04583492483 sin 5.454356055 t

0.5000000000 cos 5.454356055 t

(26)

 



 
Here you can see what the position y t looks like.

Now let's plot it. First get a numeric solution to the system so you can plot y t  .
 
 
 sol_numeric3 dsolve eval eqs3, inits , numeric ;

sol_numeric3 proc x_rkf45 ... end proc (27)

 plots:-odeplot sol_numeric3, t, y t  , t = 0 ..3, view= 0 ..4, 0.7 ..0.2 , gridlines, size = 300,
300 ;
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The overshoot is clearly seen in this latest plot of an underdamped system. 


