THE MASS SPRING PROBLEM

Consider an unstreched spring of length /.

m

] _T y=>0

positive direction

Now, attach an object of mass m to the spring. It will be streteched downward a length L. This stretched
length will be our starting point for analysis. Let this point be defined as y =0 with a positive direction
in the downward direction.

From Newton's second law we have F'=m - a or in our case FF'=m - y". What are the forces that can act
on this object?

1. Gravity

The force of gravity will always act on this object and will be defined as
Fg =m-g.

2. Spring

Hooke's law will govern the force on the spring.

F=—k-(L+y)
3. Damping
Damping will resist any movement and will be proportional to the velocity of the object.
F ==y
4. External forces

In this term you can put in any other forces acting on the object as a function of time.
£(1)



Now we add all of these forces into our Newton's Second Law equation.
m-y"=mg—k(L+y)—yy +F(1)
m-y" +yy' +ky=mg—kL+F(1)

But, at equilibrium the system is at rest and m-g =k -L. This can be used to determine k. So we can
rewrite our equation as

m-y" +yy' +ky=F(t).
and it will have the following initial conditions.

y(0) =y0 Initial displacement from the at rest, equilibrium position.
»'(0) =(»0)" Initial velocity.

restart,
with( DETools) :
eql = diff (y(1),t) =v(1);
eql = % (1) =v(1) 1
k b
eq2 = diff (v(1),t) = — [;) y(t) — [;J-v(i),
eq2i= - v(r) = -2 _ 20) @
sys == [eql, eq?];
d d k bv
Sys = [Ey(t)Zv(t),Ev(t)Z— yngt) — ngt) l A3)
sysl = subs[b=%,m=l,k=l,sys];
e [ s a0 g ot = 22
sysl : 1 y(t) =v(1), o v(1) (1) 3 “4)

ics = [[0,1,0]];
ics = [[0,1,0]] ®)



DEplot(sysl, [y(t), v( t) ], t=—5.25,ics,y=—2.5..1.5, title="Mass-Spring (m=1,k=1,b=1/3",
stepsize =0.1, scene = [t, y], size = [300, 300]);
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Now, let's put in different initial conditions to create a critically damped system.

1 1
’ 2 ’ )
d

d
sys2 = [E y(t) =v(1), T v(t)=—36y(t) — 12v(1)

1
sys2 = subs(b =6, m= > k=18, sys); ics2 = [

(6)




DEplot(sysZ, [y(t), v(t) ], t=0.3,ics2,y

—0.75..0.2, title = "Mass-Spring (m=1/2,k=18,b=6",

stepsize =0.1, scene = [t, y], size = [300, 300]);

Mass-Spring (m=1/2,k=18,b=6
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With Maple it is easy to see the solution but what does this equation look like.

First, explicitly define the initial conditions.

inits == y(O) =—0.5, v(O) =1;

inits = y(0) =—=0.5,v(0) =1

Then, define the equations.

)

@®)



Now solve the system.
dsolve( {eqs, im‘ts} , {y(t), v(t) } );

v(r)=—e " (=121=1). (1) :e_ﬁt['_zt_'ff)}

Here you can see what the position y( #) looks like.

Now let's plot it. First get a numeric solution to the system so you can plot y(#) .

sol_numeric = dsolve(eval( {eqs, inits} ), humeric);

sol_numeric = proc(x_rkf45) ... end proc

€)

(10)

plots:-odeplot( sol_numeric, [t,y( t) ] ,1=0.3, view= [0 .4,—0.7 ..0.2], gridlines, size = [300, 300]);
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Why is the above example referred to as critical damping. We need to look at our second order equation
to find out.

m-y" +vyy' +ky=0
Let's solve it.
2
f=yomy +y-y+tk;
N 2
f=yomy +yy+k an

solve(f(y)=0,y);

v+ /Y —4mk  y+ [y —dmk W)

2m ’ 2m

We see the expected result for the solution of a quadratic equation. What is interesting to us is what is
happening under the square root sign. Three cases make sense.

2
1. v — 4 mk is equal to zero.

For our examples above m is m, b is v, and k is k. So for the example immediately above
m=1/2, k=18, b=6

m (13)

2 1
[y —4mk is /62 — 4 (?) 18 or /36 — 36 or zero. So that is why the system was critically

damped.

2 2
Note that since y — 4 mk=0 then y =4 mk and y=2 / mk which will be referred to as the critical
damping coefficient.

Y =4 mk (14)

2
2.y — 4 mk is greater than zero.

Here, vy will be greater than 2 / mk or the critical damping we defined in 1.

2
3.y — 4 mk s less than zero.



Here, y will be less than 2,/ mk or the critical damping we defined in 1.

The problem set up for the above criticalled damped system started with a 16 1b object that stretches a
spring 8/9 feet.

Add a damper that will exert a force of 12 Ibs when the velocity is 2 ft/sec. Remember our equation is
m-y" +yy' + ky = F(t) with F(¢) =0.
So we have 12 =v- 2 = y=6. (This was b in the example).

w16 1

Themassism=?=§=?.

Remember m-g=k - L so

The spring is displace 6 inches upwards and given an initial velocity of 1 ft/sec. Since downward is
positive the initial conditions are

Now let's create an overdamped system. Let the damper exert a force of 17 1bs this time. Now we have

17 =v- 2 =vy=8.5. The yis greater than the critical damping factor which was 6. Now we have

d d B
m [? »(x) +Y[E y(x)) +ky(x)=0

1 (d d
> [gy(x) +8.5[ay(x)j+l8y(x)=0

Now let's multiply through by 2 and get



d
[—2 y(x) |+ 17[— y(x)] +36y(x)=0
dx
d d
? y(x) +17 . y(x) +36y(x)=0 (15)
f2==y—>y2—l— 17-y + 36;
R=yey + 179+ 36 (16)
evalf (solve( f2(y) =0,y));
—2.479202710, —14.52079729 a7

So there are 2 real roots.

Again, explicitly define the initial conditions.

inits = y(O) =—0.5, v(O) =1;
inits == y(0) =—0.5,v(0) =1 (18)

Then, define the system equations.

eqs2 :=%y(f)Zv(t),%v(t)Z—ﬂv(t) —36y(1) (19)

Now solve the system.

evalf( dsolve( {equ, inits} , {y(t), v(t) } ) );

[v(1) =1.288932058 ¢ "1 — 02889320583 ¢ (1) = (20)

—2.479202710 ¢

—0.5198978095 e +0.0198978095 ¢ 1)

Here you can see what the position y( #) looks like.



Now let's plot it. First get a numeric solution to the system so you can plot y(¢) .

sol _numeric2 = dsolve(eval( {eqs2, inits}), numeric);
sol_numeric2 := proc(x_rkf45) ... end proc (21)

plots:-odeplot(sol_numericZ, [t,y(t) ] ,1=0.3, view= [O 4,—0.7 ..0.2], gridlines, size = [300,
3001]);
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In this case the overdamped case takes a little longer to settle to 0. Note that the crtically damped system
settles as quickly as possible without overshooting the steady state condition, 0 here. What does an
underdamped system look like?

To create an underdamped system ymust be less than the critical value, 6 in these examples. Let the
damper exert 5 Ibs when the velocity is 2 ft/sec.

Now we have 5 =72 =>vy=2.5.

The yis less than the critical damping factor which was 6. Now we have

| [ | o) =0
=z |+ v e



+2.5[% y(x)] + 18 y(x) =0

1 (d
B [Q (¥)

Now let's multiply through by 2 and get

2

d d B
Ey(x)J-i—S-(a y(x)] +36y(x) =0

f2:=yy" + 5y +36;
R=yey +5y+36

evalf (solve( f2(y) =0,¥));
—2.500000000 + 5.454356055 I, —2.500000000 — 5.454356055 1

So there are 2 complex roots so we expect some sort of sinusoidal response.

Again, explicitly define the initial conditions.

inits = y(O) =—0.5, v(O) =1;
inits = y(0) =—0.5,v(0) =1

Then, define the system equations.

Now solve the system.

evalf(dsolve( {eqs.?, inits} , {y(t), v(t) } ) );
[v(t) = —0.5000000000 """ (—5.683530680 sin ( 5.454356055 1)
—2.500000000 ¢

— 2. cos(5.454356055 1) ), y (1) = (—0.04583492483 sin (5.454356055 1)

— 0.5000000000 cos( 5.454356055 1)) }

(22)

(23)

(24)

(25)

(26)



Here you can see what the position y( #) looks like.

Now let's plot it. First get a numeric solution to the system so you can plot y(#) .

sol_numeric3 = dsolve(eval( {eqs3, inits}), numeric);
sol_numeric3 = proc(x_rkf45) ... end proc 27

plots:-odeplot( sol_numeric3, [t,y(t) ] ,1=0.3, view= [0 .4,—0.7 ..0.2], gridlines, size = [300,
300]);
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The overshoot is clearly seen in this latest plot of an underdamped system.l



