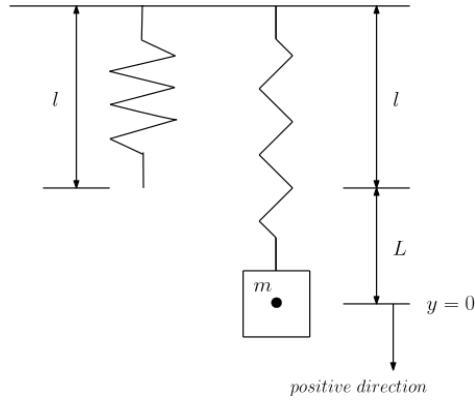


THE MASS SPRING PROBLEM

Consider an unstretched spring of length l .



Now, attach an object of mass m to the spring. It will be stretched downward a length L . This stretched length will be our starting point for analysis. Let this point be defined as $y=0$ with a positive direction in the downward direction.

From Newton's second law we have $F = m \cdot a$ or in our case $F = m \cdot y''$. What are the forces that can act on this object?

1. Gravity

The force of gravity will always act on this object and will be defined as

$$F_g = m \cdot g.$$

2. Spring

Hooke's law will govern the force on the spring.

$$F_s = -k \cdot (L + y)$$

3. Damping

Damping will resist any movement and will be proportional to the velocity of the object.

$$F_d = -\gamma \cdot y'$$

4. External forces

In this term you can put in any other forces acting on the object as a function of time.

$$F(t)$$

Now we add all of these forces into our Newton's Second Law equation.

$$m \cdot y'' = m \cdot g - k \cdot (L + y) - \gamma y' + F(t)$$

$$m \cdot y'' + \gamma y' + k \cdot y = m \cdot g - k \cdot L + F(t)$$

But, at equilibrium the system is at rest and $m \cdot g = k \cdot L$. This can be used to determine k . So we can rewrite our equation as

$$m \cdot y'' + \gamma y' + k \cdot y = F(t).$$

and it will have the following initial conditions.

$y(0) = y_0$ Initial displacement from the at rest, equilibrium position.

$y'(0) = (y_0)'$ Initial velocity.

restart;

with(DETools) :

eq1 := diff(y(t), t) = v(t);

$$\text{eq1} := \frac{d}{dt} y(t) = v(t) \quad (1)$$

eq2 := diff(v(t), t) = - \left(\frac{k}{m} \right) \cdot y(t) - \left(\frac{b}{m} \right) \cdot v(t);

$$\text{eq2} := \frac{d}{dt} v(t) = - \frac{ky(t)}{m} - \frac{bv(t)}{m} \quad (2)$$

sys := [eq1, eq2];

$$\text{sys} := \left[\frac{d}{dt} y(t) = v(t), \frac{d}{dt} v(t) = - \frac{ky(t)}{m} - \frac{bv(t)}{m} \right] \quad (3)$$

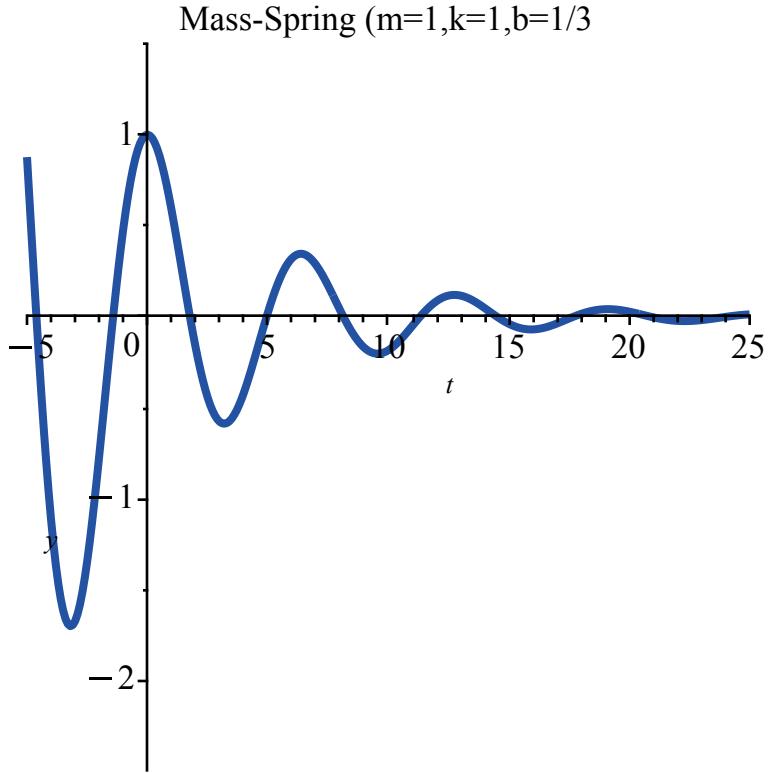
sys1 := subs(b = 1/3, m = 1, k = 1, sys);

$$\text{sys1} := \left[\frac{d}{dt} y(t) = v(t), \frac{d}{dt} v(t) = -y(t) - \frac{v(t)}{3} \right] \quad (4)$$

ics := [[0, 1, 0]];

$$\text{ics} := [[0, 1, 0]] \quad (5)$$

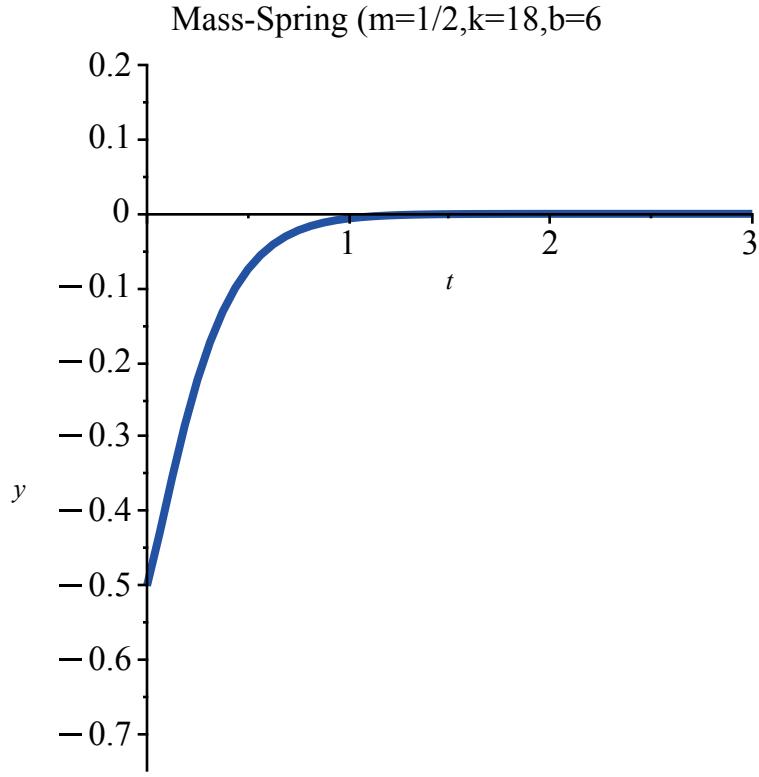
```
DEplot(sys1, [y(t), v(t)], t=-5..25, ics, y=-2.5..1.5, title="Mass-Spring (m=1,k=1,b=1/3",
      stepsize=0.1, scene=[t,y], size=[300, 300]);
```



Now, let's put in different initial conditions to create a critically damped system.

$$\begin{aligned}
 sys2 := & \text{subs}\left(b = 6, m = \frac{1}{2}, k = 18, sys\right); ics2 := \left[\left[0, -\frac{1}{2}, 1\right]\right]; \\
 sys2 := & \left[\frac{d}{dt} y(t) = v(t), \frac{d}{dt} v(t) = -36y(t) - 12v(t)\right]
 \end{aligned} \tag{6}$$

```
DEplot(sys2, [y(t), v(t)], t = 0 .. 3, ics2, y = -0.75 .. 0.2, title = "Mass-Spring (m=1/2,k=18,b=6",
stepsize = 0.1, scene = [t, y], size = [300, 300]);
```



With Maple it is easy to see the solution but what does this equation look like.

First, explicitly define the initial conditions.

$$\text{inits} := y(0) = -0.5, v(0) = 1; \quad \text{inits} := y(0) = -0.5, v(0) = 1 \quad (7)$$

Then, define the equations.

$$\begin{aligned} \text{eqs} := \frac{d}{dt} y(t) &= v(t), \frac{d}{dt} v(t) = -36 y(t) - 12 v(t); \\ \text{eqs} := \frac{d}{dt} y(t) &= v(t), \frac{d}{dt} v(t) = -36 y(t) - 12 v(t) \end{aligned} \quad (8)$$

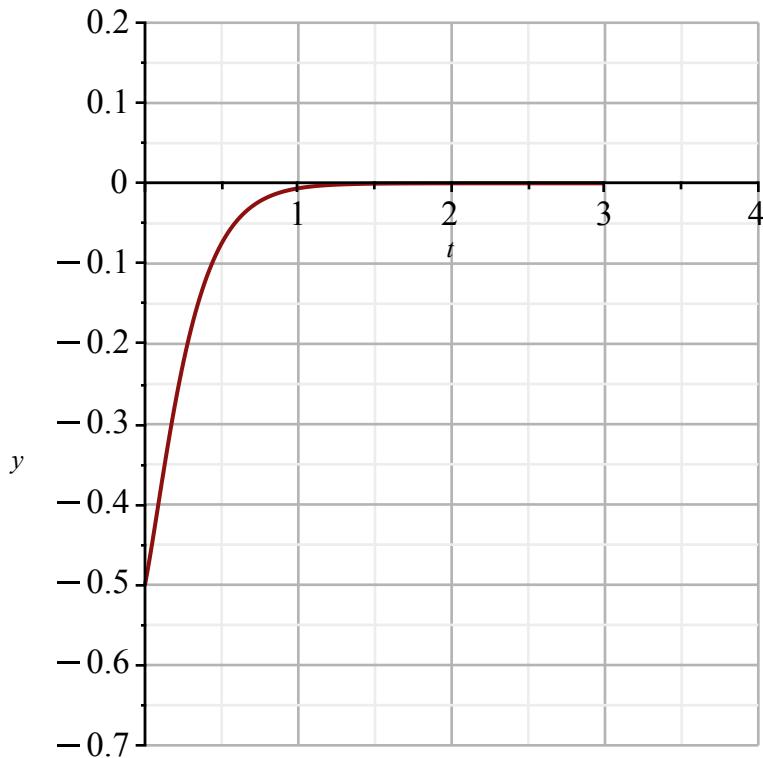
Now solve the system.

$$dsolve(\{eqs, inits\}, \{y(t), v(t)\});$$
$$\left\{ v(t) = -e^{-6t} (-12t - 1), y(t) = e^{-6t} \left(-2t - \frac{1}{2} \right) \right\} \quad (9)$$

Here you can see what the position $y(t)$ looks like.

Now let's plot it. First get a numeric solution to the system so you can plot $y(t)$.

$$sol_numeric := dsolve(eval(\{eqs, inits\}), numeric);$$
$$sol_numeric := \text{proc}(x_rkf45) \dots \text{end proc} \quad (10)$$
$$\text{plots:-odeplot}(sol_numeric, [t, y(t)], t=0..3, view=[0..4, -0.7..0.2], gridlines, size=[300, 300]);$$



Why is the above example referred to as critical damping. We need to look at our second order equation to find out.

$$m \cdot y'' + \gamma \cdot y' + k \cdot y = 0$$

Let's solve it.

$$f := y \mapsto m \cdot y^2 + \gamma \cdot y + k;$$

$$f := y \mapsto m \cdot y^2 + \gamma \cdot y + k \quad (11)$$

$$solve(f(y) = 0, y);$$

$$\frac{-\gamma + \sqrt{\gamma^2 - 4 m k}}{2 m}, \quad \frac{-\gamma - \sqrt{\gamma^2 - 4 m k}}{2 m} \quad (12)$$

We see the expected result for the solution of a quadratic equation. What is interesting to us is what is happening under the square root sign. Three cases make sense.

1. $\gamma^2 - 4 m k$ is equal to zero.

For our examples above m is m , b is γ , and k is k . So for the example immediately above $m = 1/2$, $k = 18$, $b = 6$

$$m \quad (13)$$

$\sqrt{\gamma^2 - 4 m k}$ is $\sqrt{6^2 - 4 \cdot \left(\frac{1}{2}\right) \cdot 18}$ or $\sqrt{36 - 36}$ or zero. So that is why the system was critically damped.

Note that since $\gamma^2 - 4 m k = 0$ then $\gamma^2 = 4 m k$ and $\gamma = 2\sqrt{m k}$ which will be referred to as the critical damping coefficient.

$$\gamma^2 = 4 m k \quad (14)$$

2. $\gamma^2 - 4 m k$ is greater than zero.

Here, γ will be greater than $2\sqrt{m k}$ or the critical damping we defined in 1.

3. $\gamma^2 - 4 m k$ is less than zero.

Here, γ will be less than $2\sqrt{mk}$ or the critical damping we defined in 1.

The problem set up for the above critical damped system started with a 16 lb object that stretches a spring $8/9$ feet.

Add a damper that will exert a force of 12 lbs when the velocity is 2 ft/sec. Remember our equation is

$$m \cdot y'' + \gamma y' + k \cdot y = F(t) \text{ with } F(t) = 0.$$

So we have $12 = \gamma \cdot 2 \Rightarrow \gamma = 6$. (This was b in the example).

The mass is $m = \frac{W}{g} = \frac{16}{32} = \frac{1}{2}$.

Remember $m \cdot g = k \cdot L$ so

$$k = \frac{(m \cdot g)}{L} = \frac{16}{\left(\frac{8}{9}\right)} = 18.$$

The spring is displace 6 inches upwards and given an initial velocity of 1 ft/sec. Since downward is positive the initial conditions are

$$y(0) = -\frac{1}{2} \text{ and } (y(0))' = 1.$$

Now let's create an overdamped system. Let the damper exert a force of 17 lbs this time. Now we have $17 = \gamma \cdot 2 \Rightarrow \gamma = 8.5$. The γ is greater than the critical damping factor which was 6. Now we have

$$\begin{aligned} m \left(\frac{d^2}{dx^2} y(x) \right) + \gamma \left(\frac{d}{dx} y(x) \right) + k y(x) &= 0 \\ \frac{1}{2} \left(\frac{d^2}{dx^2} y(x) \right) + 8.5 \left(\frac{d}{dx} y(x) \right) + 18 y(x) &= 0 \end{aligned}$$

Now let's multiply through by 2 and get

$$\left(\frac{d^2}{dx^2} y(x) \right) + 17 \left(\frac{d}{dx} y(x) \right) + 36 y(x) = 0$$

$$\frac{d^2}{dx^2} y(x) + 17 \frac{d}{dx} y(x) + 36 y(x) = 0 \quad (15)$$

$$f2 := y \rightarrow y^2 + 17 \cdot y + 36 ;$$

$$f2 := y \mapsto y^2 + 17 \cdot y + 36 \quad (16)$$

$$\text{evalf}(\text{solve}(f2(y) = 0, y));$$

$$-2.479202710, -14.52079729 \quad (17)$$

So there are 2 real roots.

Again, explicitly define the initial conditions.

$$inits := y(0) = -0.5, v(0) = 1;$$

$$inits := y(0) = -0.5, v(0) = 1 \quad (18)$$

Then, define the system equations.

$$eqs2 := \frac{d}{dt} y(t) = v(t), \frac{d}{dt} v(t) = -17 \cdot v(t) - 36 y(t) ;$$

$$eqs2 := \frac{d}{dt} y(t) = v(t), \frac{d}{dt} v(t) = -17 v(t) - 36 y(t) \quad (19)$$

Now solve the system.

$$\text{evalf}(\text{dsolve}(\{eqs2, inits\}, \{y(t), v(t)\}));$$

$$\left\{ v(t) = 1.288932058 e^{-2.479202710 t} - 0.2889320583 e^{-14.52079729 t}, y(t) = -0.5198978095 e^{-2.479202710 t} + 0.0198978095 e^{-14.52079729 t} \right\} \quad (20)$$

Here you can see what the position $y(t)$ looks like.

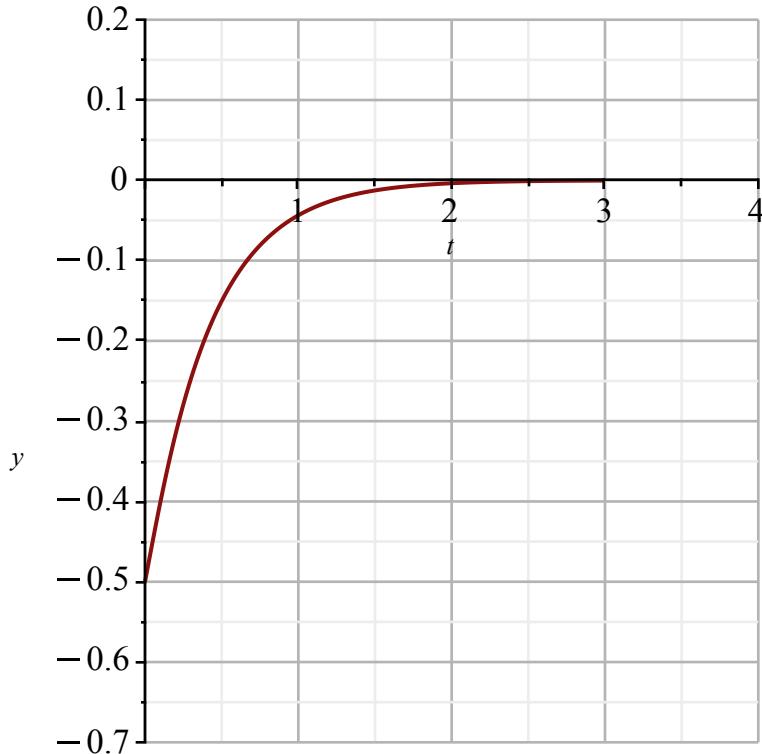
Now let's plot it. First get a numeric solution to the system so you can plot $y(t)$.

```

sol_numeric2 := dsolve( eval( {eqs2, inits} ), numeric );
sol_numeric2 := proc(x_rkf45) ... end proc
plots:-odeplot(sol_numeric2, [t, y(t)], t=0..3, view=[0..4, -0.7..0.2], gridlines, size=[300,
300]);

```

(21)



In this case the overdamped case takes a little longer to settle to 0. Note that the critically damped system settles as quickly as possible without overshooting the steady state condition, 0 here. What does an underdamped system look like?

To create an underdamped system γ must be less than the critical value, 6 in these examples. Let the damper exert 5 lbs when the velocity is 2 ft/sec.

Now we have $5 = \gamma \cdot 2 \Rightarrow \gamma = 2.5$.

The γ is less than the critical damping factor which was 6. Now we have

$$m \left(\frac{d^2}{dx^2} y(x) \right) + \gamma \left(\frac{d}{dx} y(x) \right) + k y(x) = 0$$

$$\frac{1}{2} \left(\frac{d^2}{dx^2} y(x) \right) + 2.5 \left(\frac{d}{dx} y(x) \right) + 18 y(x) = 0$$

Now let's multiply through by 2 and get

$$\frac{d^2}{dx^2} y(x) + 5 \cdot \left(\frac{d}{dx} y(x) \right) + 36 y(x) = 0$$

$$f2 := y \rightarrow y^2 + 5 \cdot y + 36 ;$$

$$f2 := y \mapsto y^2 + 5 \cdot y + 36 \quad (22)$$

$$\text{evalf}(\text{solve}(f2(y) = 0, y));$$

$$-2.500000000 + 5.454356055 I, -2.500000000 - 5.454356055 I \quad (23)$$

So there are 2 complex roots so we expect some sort of sinusoidal response.

Again, explicitly define the initial conditions.

$$inits := y(0) = -0.5, v(0) = 1;$$

$$inits := y(0) = -0.5, v(0) = 1 \quad (24)$$

Then, define the system equations.

$$eqs3 := \frac{d}{dt} y(t) = v(t), \frac{d}{dt} v(t) = -5 \cdot v(t) - 36 y(t) ;$$

$$eqs3 := \frac{d}{dt} y(t) = v(t), \frac{d}{dt} v(t) = -5 v(t) - 36 y(t) \quad (25)$$

Now solve the system.

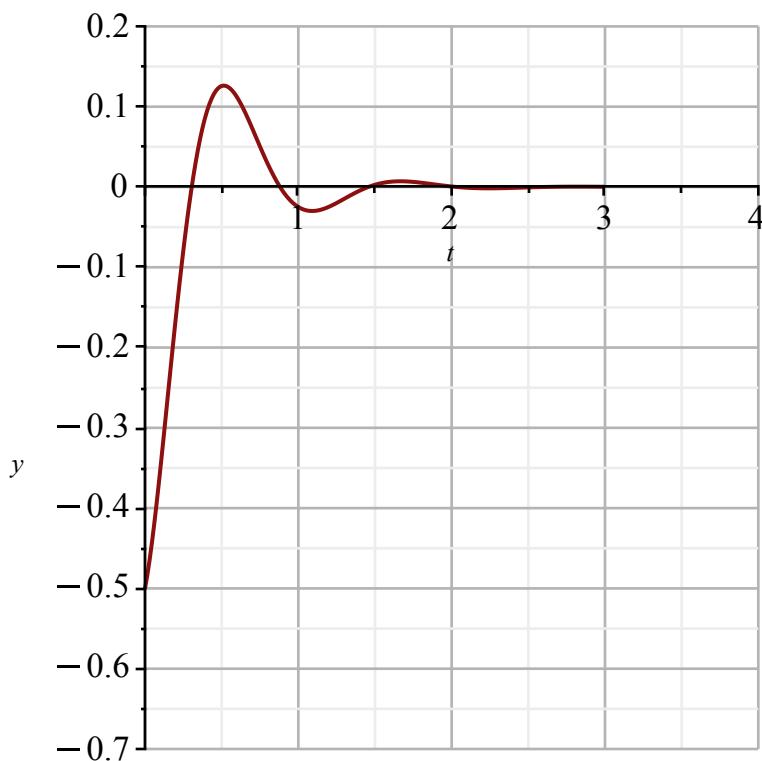
$$\text{evalf}(\text{dsolve}(\{eqs3, inits\}, \{y(t), v(t)\}));$$

$$\{v(t) = -0.5000000000 e^{-2.500000000 t} (-5.683530680 \sin(5.454356055 t) - 2. \cos(5.454356055 t)), y(t) = e^{-2.500000000 t} (-0.04583492483 \sin(5.454356055 t) - 0.5000000000 \cos(5.454356055 t))\} \quad (26)$$

Here you can see what the position $y(t)$ looks like.

Now let's plot it. First get a numeric solution to the system so you can plot $y(t)$.

```
sol_numeric3 := dsolve( eval( {eqs3, inits} ), numeric );
sol_numeric3 := proc(x_rkf45) ... end proc
plots:-odeplot(sol_numeric3, [t, y(t)], t=0..3, view=[0..4, -0.7..0.2], gridlines, size=[300, 300]);
```



The overshoot is clearly seen in this latest plot of an underdamped system. |